Δισδιάστατοι πίνακες
Άσκηση 1.
Οι 20 μαθητές ενός τμήματος της Γ΄ τάξης έχουν πάρει τους βαθμούς Α΄ τετραμήνου στα 14 μαθήματα που παρακολουθούν. Να γραφεί αλγόριθμος ο οποίος:
α. Διαβάζει τους βαθμούς όλων των μαθητών και τους αποθηκεύει ανά μαθητή σε έναν δισδιάστατο πίνακα 20Χ14.
β. Βρίσκει τον μέσο όρο των βαθμών του πίνακα
γ. Βρίσκει τον μεγαλύτερο βαθμό στον πίνακα, τον αντίστοιχο μαθητή και το μάθημα στο οποίο επιτεύχθηκε.
δ. Βρίσκει το πλήθος των βαθμών πάνω από 18.
ε. Βρίσκει το άθροισμα των βαθμών κάτω από 10.
στ. Εμφανίζει τους βαθμούς ανά μάθημα.
Άσκηση 2.
Να γραφεί αλγόριθμος ο οποίος, με δεδομένο έναν δισδιάστατο πίνακα αριθμών, εξετάζει αν ο πίνακας είναι αραιός. Θεωρούμε ότι ένας πίνακας είναι αραιός αν πάνω από το 80% του πλήθους των στοιχείων του είναι μηδέν.
Άσκηση 3.
Η Ε.Μ.Υ. συγκέντρωσε τα στοιχεία που αφορούν την μέση ημερήσια θερμοκρασία στην πόλη της Δράμας για το 2009 και τα καταχώρησε σε έναν δισδιάστατο πίνακα 12Χ30 (θεωρήστε ότι όλοι οι μήνες έχουν 30 ημέρες). Σε έναν αντίστοιχο πίνακα υπάρχουν οι μέσες ημερήσιες θερμοκρασίες για το 2010. Να γραφεί αλγόριθμος ο οποίος
α. Υπολογίζει ποιο από τα δύο έτη ήταν θερμότερο.
β. Βρίσκει ποιο έτος παρατηρήθηκε μεγαλύτερη θερμοκρασία και ποια ήταν αυτή.
γ. Βρίσκει ποιον μήνα ποιανού έτους παρατηρήθηκε η μικρότερη θερμοκρασία.
Άσκηση 4.
Ένα περιοδικό αυτοκινήτων κάνει ένα τεστ κατανάλωσης βενζίνης (lt/100 χλμ) σε τέσσερα αυτοκίνητα (Alfa Romeo, Audi, Mercedes Benz, Saab), σε τέσσερα διαφορετικά προφίλ οδήγησης, στα 80, 100, 120 και 140 χλμ/ώρα. Να γραφεί αλγόριθμος ο οποίος:
α. Καταγράφει τα αποτελέσματα του τεστ σε έναν δισδιάστατο πίνακα.
β. Αποθηκεύει τα ονόματα των αυτοκινήτων σε έναν μονοδιάστατο πίνακα
γ. Υπολογίζει και εμφανίζει τον συνολικό μέσο όρο κατανάλωσης για κάθε μοντέλο.
δ. Βρίσκει το μοντέλο με τον μικρότερο μέσο όρο κατανάλωσης και εμφανίζει το όνομά του.
ε. Υπολογίζει τον συνολικό μέσο όρο κατανάλωσης για κάθε ταχύτητα και κάθε όχημα.
Άσκηση 5.
Οι 20 μαθητές ενός τμήματος της Γ΄ τάξης έχουν πάρει τους βαθμούς Α΄ τετραμήνου στα 14 μαθήματα που παρακολουθούν και έχουν καταχωρηθεί σε έναν δισδιάστατο πίνακα Α. Να γραφεί αλγόριθμος ο οποίος:
α. Διαβάζει και αποθηκεύει τα ονόματα των μαθητών σε έναν μονοδιάστατο πίνακα Ο.
β. Διαβάζει και αποθηκεύει τα ονόματα των μαθημάτων σε έναν μονοδιάστατο πίνακα Μ.
γ. Υπολογίζει τον μέσο όρο της βαθμολογίας κάθε μαθητή στα 14 αυτά μαθήματα και τον αποθηκεύει σε έναν μονοδιάστατο πίνακα ΜΟ1.
δ. Υπολογίζει τον μέσο όρο της βαθμολογίας των 20 μαθητών για κάθε μάθημα και τον αποθηκεύει σε έναν μονοδιάστατο πίνακα ΜΟ2.
ε. Βρίσκει τον μαθητή με το καλύτερο μέσο όρο βαθμολογίας και εμφανίζει το όνομά του.
στ. Βρίσκει το μάθημα με τον χαμηλότερο μέσο όρο και εμφανίζει το όνομά του.
Άσκηση 6.
Ένα ξενοδοχείο έχει 10 ορόφους με 100 δωμάτια σε κάθε όροφο. Σε έναν δισδιάστατο πίνακα Α(10 Χ 100) έχει καταγραφεί αν τα δωμάτια είναι ελεύθερα η κατειλημμένα ως εξής: στον όροφο i το δωμάτιο j είναι ελεύθερο αν Α[i,j]= 0, ενώ είναι κατειλημμένο αν Α[i,j]= 1. Να γράψετε αλγόριθμο ο οποίος:
α. Υπολογίζει το σύνολο των ελεύθερων δωματίων στο ξενοδοχείο.
β. Υπολογίζει τα κατειλημμένα δωμάτια στον 5ο όροφο.
γ. Υπολογίζει και εμφανίζει τον όροφο με τα περισσότερα κατειλημμένα δωμάτια
Άσκηση 7.
Δίνεται ένας πίνακας ακεραίων με διαστάσεις 5Χ8. Να ?ανταλλάξετε? τα περιεχόμενα της πρώτης και της τελευταίας σειράς (δηλ. να μεταφερθούν οι ακέραιοι αριθμοί της 5ης σειράς στις αντίστοιχες θέσεις της 1ης σειράς και αντίστροφα).
Άσκηση 8.
Να γίνει αλγόριθμος που να αποθηκεύει σε έναν δισδιάστατο πίνακα τις μέσες θερμοκρασίες των πόλεων Δράμας και Σερρών για το διάστημα 30 ημερών και στη συνέχεια να υπολογίζει πόσες ημέρες η μέση θερμοκρασία στη Δράμα ήταν μεγαλύτερη από την αντίστοιχη θερμοκρασία στις Σέρρες.